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 Goodness-of-fit tests on a circle. II

 By G. S. WATSON

 University of Toronto and Research Triangle Institutet

 1. INTRODUCTION

 In a previous paper (Watson, 1961, referred to hereafter as Part I) the statistic

 UN-= N FN(x) - F(x) - [FN(y) - F(y)] dF(Y)} dF(x) (1)

 was proposed for testing the null hypothesis that the random sample of N with distribution

 function FN(x) has been drawn from a population with the continuous distribution function

 F(x). It is useful for distributions on a circle since its value does not depend on the arbitrary

 point chosen to begin cumulating the probability density and the sample points. It was

 shown that 00
 lim prob(U2 > v) - 2 I (-1)m-lexp(2M27Tr2v). (2)
 N-1-oo m=1

 The merit of this distribution as an approximation to the distribution of Uv for finite N was

 not discussed.

 The purpose of the present paper is twofold; (a) to show that the limiting distribution

 (N1, N2 -- oo, N1/N2 - A > 0), of the two-sample version of (1), the Lebesgue-Stieljes integral,

 UNN2 - N + FN,(x) -'N,(x)- [FN,(y)-FN(y)] dF*(Y) 'dF*(x), (3)

 where F*(x) = NlFN1(X) +N2FN2(X)
 N + N2

 is again given by (2); (b) to show that the distribution (2) is adequate for the practical use, in
 small samples, of (1) and (3). Aim (a) is achieved in ? 2 using methods due to Rosenblatt

 (1952) and Fisz (1960). To examine (b), one can either strive to find further terms in the

 asymptotic expansion for the distribution of U2, (2) being the leading terms, by the method

 of Darling (1960) or proceed numerically. For statistic (1), the latter approach means a

 sampling study. For the statistic (3), one may either make a Monte Carlo study or, for small

 samples, compute the exact (discrete) distribution of UN1, N2 by enumeration since it is easily
 shown that

 UN1,N2 - (N +N)2 [FNI(x()- FN2(x(X))]2 + E [ ( -TN2(Y(j))] NJ., N - - E N~~~ [FN2y(y) ) ')2 ~~~~~~j=1
 N1 N2 2

 i FN1(X(i)) FN2(X(i))} + E FN1 N2(Y(i))} (4)
 Nj+ N2

 where x(f) (i = 1, ..., N1) and y (j- 1, ..., N2) are the two ordered samples being compared,
 depends only on the relative ranks. Sampling studies were carried out for the writer by

 t Research sponsored in part by the Office of Naval Research.
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 58 G. S. WATSON

 Mr M. A. Stephens and are reported in ? 3. The exact method was undertaken by Mr E. J.

 Burr whose results, along with those of the related statistic W N2 are reported in Burr (1961).

 Section 4 gives an interesting biological example of the use of statistic (4), which in fact,
 suggested its development.

 Thus, in these two papers, one- and two-sample non-parametric goodness-of-fit tests have

 been provided that are useful on the circle where there is no natural point at which to start

 the cumulative distribution. Kuiper (1960) has also given tests applicable in this situation.

 Nothing is known of their relative merits.

 2. THE TWO-SAMPLE TEST

 It may first be shown that

 RNl, Ng - N +N (FN1(X) -FN2(X) - f [N1(Y) -FN2(Y)]dF(Y)}dF(), (5)

 has, as N1; N2 -? oo, N1/N2 -?A > 0, the limiting distribution (2). The expression (5) differs
 from (3) only by the use of F instead of F*. Using u = F(x) to transform to the unit interval,

 we may then define

 DN(u) = FN1Qu) -FN2(u) [F l(U) - FN2(U)] du. (6)

 Calculations show that

 coy [D(u), DN(v)] (+ coy [Z(u), ZN(v)], (7)

 where ZN(U) is given by equation (9) in Part I. Since.

 = ZN(U)2dU

 the required result follows immediately.

 It is now necessary to show that, as N1, N2 -' cc, N1/N2 -> A > 0,

 UN19N2-RNT,N2 -*0 in probability. (8)
 For result (8), combined with that of the previous paragraph, establishes that U2N2 has
 asymptotically the distribution (2). Now

 UN~1,N2-RN1,N, N+ N2 jNN, {FN(X) -FN,(X)}2 d[F*(X)-F(X)]

 + NU {2(f [FN ()- FN2(X)] dF(X)) -d(f_[F1(x)-FN2(X)] dF*(x))}* (9)

 The first term on the right-hand side of (9) arises in a similar discussion of the statistic WN for

 N11'-9 =N+N T {FN1(x)-FN(x)}2dF*(X) (10)

 is its two-sample version. It has been shown (Rosenblatt, 1952; Kiefer, 1959; Fisz, 1960) that

 this term tends to zero in probability. It remains to show that the same is true of the second

 term. This may be written as the product of the two factors,

 N += J4NN1X J [FN2(x)-FN(x)]d[F(X) +F*(x)] (11)
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 Goodness-of-fit tests on a circle. II 59

 and /'2 jZ__ [F1(x) - FN2(x)] d[F(x) - F*(x)]. (12)

 But L+ = 2Jj7 f [FN1(x)-FN,(x)]dF(x)-L_, (13)

 and, writing ui = F(xi), vj = F(yj), (j= 1, .,N1,j = 1, *..,N2),

 S/Nj J'| [FN,(x) -FN,(x)] dF(x) - | (14)

 where Ni F(x.) N F(y)
 N, N2

 Thus asymptotically the expression (14) is normal with mean zero and variance 1/12. Hence
 we only need to prove that L_ tends to zero in probability. Minus one times L_ may be

 written as

 / j N 1N2 f 0 _ _ _ _ _ _ _ _ _ _ __)]- F x )

 4 N1 + N j {[FNI(x) - F(x)] - [FN2(X) - F(x)]} d Nl[FN1(x) F(X)] + N2[FN2(X) - F(X)]

 which simplifies to

 (+N;1 2 X [ Iv2(X) - F(x)] d[FN2(X) - F(x)]
 (Nl - - N N2rc

 -Nj 2 N 0 ) [FN1(x) -F(x)] d[FN(x) -F(x)], (15)
 (N + N2) -~ 1

 since N, (FN1-F) d(FN -F) = N2 f (FN-F)d(FN-F) = O.
 - 0 c

 Mapping onto the unit interval with u = F(x), and writing

 zj(u) = INjFNl(x)-F(x)],l (6)
 Z2(U) = VN2[FN2(x)-F(x)], (

 the expression (15) becomes

 -L- +N2,]5 IO j(a) dZ2(U) N ) Z2(a) dzl(u) (17) (N N+ j (N + N2)J

 Since zl(u) and Z2(u) are independent functions with zero means, from (16), E(L_) = 0.
 To find var (L_), we need the well-known result,

 E(zi(u)zi(v)) = min(u,v)-uv (i= 1,2). (18)

 Then var( L)(N+N2)3 JJ E[z1(u) zl(u') dZ2(u) dz2(u')]

 -(N +1N )3 JtEz(f 2tt Z(fdl?
 f0fJJE[zl(u) Z2(U) dz2(u) dzl(u')]

 (Nl + N)20

This content downloaded from 
������������195.220.128.226 on Tue, 11 Jan 2022 21:23:02 UTC������������ 

All use subject to https://about.jstor.org/terms



 60 G. S. WATSON

 Thus var (L_) - 0, as N, N2 -* o, N1/N2-* A > 0, provided the integrals in (19) are finite.
 This last point may be verified by using the transformation

 z)(u) = (ul)Zi( Iu) (i = 1,2), (20)

 employed by Rosenblatt for a similar purpose. We have thus demonstrated that the

 asymptotic distribution of UN1,N2 is given by (2).

 3. SAMPLING EXPERIMENTS

 Mr M. A. Stephens programmed an I.B.M. 650 computor to draw two random samples of

 10 members and to compute U20 for each and U20 10 for the pair. As a matter of interest
 W20 and W,10 were also calculated, where WN is defined by (1) in Part I and WN1N2 is its
 two-sample analogue. The common limiting distribution of these latter statistics is tabulated
 in Anderson & Darling (1952). Due to loss of cards, the numbers of calculated single and

 two-sample statistics do not match up.

 There is some arbitrariness in reporting work of this kind. While the distributions of UN
 and WN are continuous, those of UN1N2 and W%1,N2 are discontinuous and the number of

 samples used here was great enough to show this roughness. In the case of W20, 10, Mr E. J.
 Burr has found the exact distribution and the only interest in the sampling results in this
 case is that they showed some of his larger 'lumps'. The figures in the table below were
 obtained by plotting the upper part of the cumulative distribution of each of the four

 Significance W0 10,1 l0o W1o0,1 o00
 level (%) [5261] [2671] [cX] [5261] [2429] [cX]
 50 0*070 0-077 0-069 0*122 0-129 0*119
 30 *106 *104 *096 *187 *193 *184
 20 *118 *124 *117 *241 *254 *241
 15 *131 *137 *131 *284 *297 *284
 10 *150 *156 *152 *343 *370 *347

 7 04165 0.172 0.170 0-395 0*424 0 405
 6 *171 *178 *178 *418 *450 *430
 5 *178 *185 *187 *445 *482 *461
 4 *186 *194 *198 *478 *520 .499
 3 *197 *206 *213 *525 *562 *549
 2 *214 *224 *233 *580 *624 *620
 1 *244 *250 *268 *715 *738 *743

 samples; the significance points, corresponding to the levels listed, were read off from the
 graphs. For the U2 statistics, the theoretical asymptotic significance points were calculated
 from (2). For the W2 statistics, they were obtained from Anderson & Darling's table.

 This table gives the significance points, at the levels in the first column, for the four
 statistics in sampling experiments using the number of samples shown at the head of the
 column. The columns headed [oo] give the exact asymptotic points.

 It is clear from the table that U20 is stochastically larger than U20. From the graphs of
 the sampling experiment the difference P(U20 < u) -P(U20 < u) dropped from about 0 01,
 when the common value was about 090, to 0005, when the common value was 098. From

 50 % down to 7 %, the theoretical points follow those of U20 and below it are nearer those of

 lo, 10. In using the theoretical 5 % point for U10 one would be in fact working at the 4.5 %
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 Goodness-of-fit tests on a circle. II 61

 level, as judged by those results. For U210, no sensible error is made. At 1 %, the error for
 both is about 0 05 %. Since one may expect better agreement between the small and large
 sample significance points for samples bigger than 10, no serious error will be made in using
 the asymptotic distribution for the U2 statistics. At this point it may be remarked that it is
 not necessary to have a table. For if

 a = P(U2 > v),

 then, from (2), v 212 (loge 2 - loe [1 +
 1

 to excellent accuracy. In fact, v 1974 log" ,

 will be all that is needed in practice.

 From the graphs, W0, 10 is stochastically larger than W20 by about 1 % in the region of
 95 %. The theoretical points follow the experimental points for W20 more than those of
 W,10 for levels down to 3 % after which the situation reverses. Again the use of the asymp-
 totic approximation will certainly be adequate for practical tests.

 4. AN EXAMPLE

 We will consider some data kindly supplied by Dr K. Schmidt-Koenig of the Department
 of Zoology, Duke University. In accordance with the theory of the sun-azimuth compass
 (Matthews, 1955; Kramer, 1957), displaced homing pigeons are misled in a predictable way
 if their 'internal clock' has been reset by exposure to a time-shifted sequence of day-night
 cycles. In this experiment Dr Schmidt-Koenig reset the 'clocks' of the experimental birds
 by 6 hr. clockwise. This would be expected from theory to give a left deviation of the

 experimental group of roughly 90?. The data are the bearings of the birds flying away from
 the release point, made just as they vanish in the distance. They are measured only to the
 nearest 50 and some account of this grouping is taken in the analysis.

 Control group (N1 = 12): 50, 290, 300, 300, 305, 320, 330, 330, 335, 340, 340, 355.
 Experimental group (N2 = 14): 70, 155, 190, 195, 215, 235, 235, 240, 255, 260, 290, 300,

 300, 300.

 To compute the statistic (4), it is necessary to set the samples down in two columns so that
 they are jointly ordered. If there are no ties, either within or between samples, the table will
 have N1 + N2 rows. In a third column the value of FN1(x)-FN2(x) may be written as a difference
 of fractions, i/N1 -j/N2, and in a fourth this difference should be expressed as a decimal. The
 sum S1 and sum of squares S2 of this fourth column are then found and hence

 U2 N, N2 00 __ I N1,N2= (N1+A72)2 (52 N1+N2)

 In the present example there are a number of ties. Let both samples be ordered in one

 column, with each repeated value showing only once. Call these numbers zl, Z2, ... and
 suppose Zk is repeated in the data nk times. Then (4) now reads

 N,,N2 E(N -FN,(Zk -FN2(Zk )]nk- 1 {FN(Zk) -FN(Zk)} n]2

 To find the values of FN1(.) and FN2(.), it is necessary to order jointly the two samples as
 before but not to list repeats within samples. An additional column for nk must be added.
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 62 G. S. WATSON

 The computations are then similar to those above. In the present example, these calcula-

 tions take following tabular form.

 --AN1 Na -FN1(Zk) -FN2(Zk)
 X(i) Yej) A nk

 50 (1) 1/12- 0/14 0*08333 1
 70 (1) 1/12- 1/14 *01190 1
 155 (1) 1/12- 2/14 - 05952 1
 190 (1) 1/12- 3/14 - 13095 1
 195 (1) 1/12- 4/14 - 20238 1
 215 (1) 1/12- 5/14 - *27381 1
 235 (2) 1/12- 7/14 - 41667 2
 240 (1) 1/12- 8/14 - 48810 1
 255 (1) 1/12- 9/14 - 55952 1
 260 (1) 1/12-10/14 - 63095 1

 290 (1) 290 (1) 2/12-11/14 -.61905 2
 300 (2) 300 (3) 4/12-14/14 - 66667 5
 305 (1) 5/12- 1 - 58333 1
 320 (1) 6/12- 1 - 50000 1
 330 (2) 8/12- 1 - 33333 2
 335 (1) 9/12- 1 - 25000 1
 340 (2) 11/12- 1 - 08333 2
 355 (1) 12/12- 1 0*00000 1

 (N1 = 12) (N2 = 14) 26

 We find Sl = >nk{FN1(Zk) - FN2(Zk)} 3-9* 8214,

 S2 n Enk{FNl(Zk)-FN2(Zk)}2 = 5*3179,
 k

 U2 14- 0-3996.
 The asymptotic probability of U2 exceeding this value on the null hypothesis is about 10-3.

 From the trend of the sampling results shown in the table of ? 3, the real probability on the

 null hypothesis, will be even smaller. The ties here are due of course to grouping, i.e. to

 coarse measurement. To see the effect of this suppose that the 290, 300, 300 in the control

 group had been 285, 295, 295, i.e. all between sample ties broken in favour of the null

 hypothesis. In this case, it is found that U21214 = 0X3204 which is still highly significant.
 Thus the data furnishes strong evidence that the control and experimental birds have been

 chosen from different populations. However, to test whether the data supports the theory,

 it would be more useful to add 900 to the vanishing angles of all the experimental birds

 before performing the test. With these figures U214 become equal to 0 113, a value which is

 exceeded, on the null hypothesis, with a probability of approximately 20 %. Hence the
 data does support the theory. It would be possible to find a set of angular shifts which,

 like 900, lead to non-significant values of U2, at say the 5 % level. This would give an approxi-
 mate 95 % confidence set for the angular displacement caused by the 'treatment' given the
 experimental birds. There seems to be no way of finding this set except by a rather tedious

 trial and error process.

 I am indebted to Prof. E. S. Pearson for some helpful suggestions in the presentation of the

 paper.
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